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Many vibration problems involve a general periodic excitation such as those of a
triangular or rectangular waveform. In practice, the periodic excitation may become
disordered due to uncertainties. This paper presents a stochastic model for general periodic
excitations with random disturbance, which is constructed by introducing random
amplitude and phase disturbances to individual terms in the Fourier series of the
corresponding deterministic periodic function. Mean square convergence of the random
Fourier series are discussed. Monte Carlo simulation of disordered sawtooth, triangular,
and quadratic wave forms are illustrated. An application of the excitation is demonstrated
by vibration analysis of a single-degree-of-freedom (SDOF) hydraulic valve system
subjected to a disordered periodic fluid pressure. In the present study only the phase
disturbance is considered. Effects of the intensity of phase modulation on up to fourth order
moment response and the convergence rate of the random Fourier series are studied by
numerical results. It is found that a small random disturbance in a general periodic
excitation may significantly change the response moment.
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1. INTRODUCTION

In many engineering problems, sources of vibration are considered to be periodic.
In practice, however, the excitation may not always be perfectly periodic due to
uncertainties, and disorders in both amplitude and phase may be observed. It is very
important to take into account the random deviations from perfect periodicity. This paper
presents a stochastic model for general periodic excitation with random disturbance,
which is constructed by introducing random amplitude and phase disturbances into
individual terms in the Fourier series of the corresponding deterministic periodic function.
In the present study, the discussion is limited to the case of phase modulation alone
and these phase modulations in different terms are independent zero-mean white noise
processes.

The proposed model is a further extension of the model of single harmonic excitation
with correlated random amplitude and phase disturbances, which was established by
Hou et al. [1, 2]. An earlier version for phase modulation alone was originally used
by Dimentberg [3] and Wedig [4] in the investigation of Mathieu type stochastic system and
it was later applied by Dimentberg to the studies of parametric excitation of a straight
pipe due to slug flow of a two-phase fluid [5], and stability and subcritical dynamics of
structures with spatially disordered traveling parametric excitation [6]. Lin and Li also used
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the model in the stability analysis of bridges in turbulent flow [7]. The non-Gaussian
nature of stationary response of SDOF systems under harmonic excitation with random
phase modulation has been analyzed quantitatively by Dimentberg et al. [8]. The
excess factor was calculated and the normalization effect with increasing excitation/
system bandwidth ratio had been demonstrated. Hou et al. [9] later developed a
non-stationary version of the model and studied the effects of non-stationarity including
build-up, decay, and duration of the phase modulation on the system response. As with
its ancestors, the proposed model is inherently non-Gaussian in nature. Furthermore, the
potential applications of the model seem to be much broader than just those describing
imperfectly periodic phenomena. Indeed, the model is quite versatile in describing spectral
properties of random processes. Since the model is a strongly non-Gaussian process,
it can be easily incorporated into structural dynamic analysis by stochastic differential
calculus and method of moments. The potential field of applications may include
offshore mechanics, with typical high-amplitude nonlinear ocean waves of nonsinusoidal
pattern.

In this study, the mean-square convergence of the random Fourier series is discussed.
Numerical simulation of the model are illustrated for wave forms with different degrees
of continuity including the saw, triangle, and quadratic waves. The effects of random phase
modulations can be clearly observed. Application of the model is demonstrated by
vibration analysis of a hydraulic control system subjected to a fluid pressure. The valve
is modelled as a linear SDOF mass-spring-dashpot system and the fluid pressure is
represented by a randomly disordered periodic triangular waveform. Response of the
system is analyzed by the method of moments, and response moments up to fourth order
are obtained numerically. The effects of uncertainties in the periodic excitation on moment
response and truncation error of the random Fourier series are discussed.

2. A MODEL FOR RANDOM GENERAL PERIODIC PROCESSES AND
ITS CONVERGENCE

Let Y(t) be a basically periodic process but with small random deviation from perfect
periodicity. By adding random phase modulation to each term in equation (1), Y(t) can
be modelled as a random Fourier series:

Y(t)=
a0

2
+ s

a

i=1

ai cos ui (t)+ s
a

i=1

bi sin ui (t),
dui (t)

dt
=iv0 + ji (t), (1, 2)

where a0, ai , bi (i=1, 2, . . . ) are deterministic constants which are in fact Fourier
coefficients of the corresponding undisordered periodic function, v0 =2p/T in which T is
the periodic of the corresponding undisturbed periodic function, ji (t) is a stationary white
noise random process with zero-mean and intensity Di , i.e.,

E[ji (t)]=0, E[ji (t)ji (t+ t)]=Did(t), i=1, 2, . . . . (3)

In equation (3), d( · ) is the Dirac delta function and E[ · ] is the mathematical expectation
operator. In this study, random disturbances ji (t) of the ith harmonic term (i=1, 2, . . . )
are assumed to be independent of each other which leads to

E[ji (t)jj (t+ t)]=E[jj (t)ji (t+ t)]=0, i, j=1, 2, . . . , i$ j. (4)

The random process Y(t) defined by equations (1) through (4) represents a disordered
periodic process. In the case of no random phase disturbances (Di =0, i=1, 2, . . . ), Y(t)
reduces to a deterministic general periodic function F(t) with a minimum period of T.
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F(t) can be formally expanded into the Fourier series

F(t)=
a0

2
+ s

a

i=1

ai cos iv0t+ s
a

i=1

bi sin iv0t, (5)

where

ai =
2
T g

T

0

F(t) cos iv0t dt, i=0, 1, 2, . . . ; bi =
2
T g

T

0

F(t) sin iv0t dt, i=1, 2, . . . .

(6, 7)

The response of linear system to F(t) can then be determined by the principle of
superposition. Conditions for convergence of a deterministic Fourier series are referred
to Churchill and Brown [10].

To evaluate the probabilistic characteristics of random Fourier series Y(t), a general
term of Y(t) is examined. Let

Y1i (t)= cos ui (t), Y2i (t)= sin ui (t), i=1, 2, . . . . (8)

Both Y1i (t) and Y2i (t) are zero-mean randomly disordered harmonic processes [8]. The
probability density functions of Y1i (t) and Y2i (t) are

p(Y1i )=1/(pz1−Y2
1i ), p(Y2i )=1/(pz1−Y2

2i ), i=1, 2, . . . . (9)

Note that Y1i and Y2i are bounded by 21.
It has been shown that

E[Y2
1i]=E[Y2

2i]=1/2, i=1, 2, . . . . (10)

The auto-correlation functions of Y1i (t) and Y2i (t) are equal to each other [7].

RY1i (t)=RY2i (t)= 1
2 cos (iv0t) e(−Di /2) =t=, t= t2 − t1, i=1, 2, . . . . (11)

Based on equations (8)–(11), the mean value, mean square value, and autocorrelation
function of random Fourier series Y(t) can be derived:

E[Y(t)]=
a0

2
+ s

a

i

aiE[Y1i (t)]+ s
a

i

biE[Y2i (t)]=
a0

2
, (12)

E[Y2(t)]=E$6a0

2
+ s

a

i=1

aiY1i (t)+ s
a

i=1

biY2i (t)7
2

%. (13)

Since one assumes that the random disturbance ji (t) in each harmonic term is
independent of the others, the expectation values of all cross-terms should be zero:

E[Y1i (t)Y1j (t)]=E[Y2i (t)Y2j (t)]=E[Y1i (t)Y2j (t)]=0, i, j=1, 2, . . . , i$ j. (14)

And by the property of orthogonal functions:

E[Y1i (t)Y2i (t)]=0, i=1, 2, . . . . (15)

Substituting equations (14) and (15) into equation (13), one obtains

E[Y2(t)]=
a2

0

4
+

1
2

s
a

i=1

(a2
i + b2

i ). (16)

E[Y2(t)] is a finite number provided the corresponding deterministic Fourier series is
convergent based on the well-known Parseval equality.
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Figure 1. Simulation of harmonic wave with phase modulation: D=0·01; ——, harmonic; · · · · , harmonic
with noise.

Similarly, the auto-correlation function of Y(t) can be found:

RY (t)=
a2

0

4
+ s

a

i=1

1
2

(a2
i + b2

i ) cos (iv0t) e(−Di /2) =t=. (17)

From the above results, one may conclude that the random Fourier series Y(t)
is generally a non-zero mean stationary random process, which is convergent in
the mean square sense. For detailed derivation of equations (16) and (17), please see
Appendix A.

3. SIMULATION OF RANDOMLY DISORDERED PERIODIC PROCESSES

Some graphic samples of the proposed model, Y(t), are presented in Figures 1–6. These
results are based on Monte Carlo simulation. Figure 1 shows the time history of a single
harmonic excitation with small phase modulation. The phase shift caused by random phase
modulation can be clearly observed.

Figure 2. Simulation of random Fourier series for a triangular wave with small disturbance. For low noise
D(i)=0·01, i=1, . . . , 6. ——, Original signal ft (t); · · · · , Fourier series with noise, Yt (t) (N=6).
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Figure 3. Simulation of random Fourier series for a triangular wave with medium disturbance. For medium
noise D(i)=0·25, I=1, . . . , 6. ——, Original signal ft (t); · · · · , Fourier series with noise, Yt (t) (N=6).

Figure 2 presents a sample for a disordered triangle waveform with a period of 2p.
The Fourier expansion of the deterministic periodic counterpart is give by

ft (t)=6−t/p+1,

t/p−1,

0E tQ p,

pE tE 2p.
(18)

The random Fourier series of the triangle waveform is

Yt (t)=
1
2

+
4
p2 s

a

i=1

cos ui (t)
(2i−1)2,

dui (t)
dt

=2i−1+ ji (t), i=1, 2, . . . , (19)

where ji (t) is the random phase disturbance.
Samples of disordered triangle waveforms with three different levels of random

disturbance are illustrated in Figures 2–4. Considering that ft (t) has C0 continuity and
the truncation error of ft (t) with six terms is negligible, six terms are also used in the
simulation of Yt (t). While a sample with small random disturbance in Figure 2 or a sample
with medium disturbance in Figure 3 may still be recognized as a disordered triangular
waveform, the triangular pattern in the result for large phase modulation, as shown in
Figure 4, disappears and the sample becomes more noise-like, as expected.

Figure 4. Simulation of random Fourier series for a triangular wave with large disturbance. For large noise
D(i)=25, i=1, . . . , 6. ——, Original signal ft (t); · · · · , Fourier series with noise, Yt (t) (N=6).
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Figure 5. Simulation of random Fourier series for a quadratic wave with random disturbance. D(i)=0·01,
i=1, . . . , 5. ——, Original signal fq (t); · · · · , Fourier series with noise, Yq (t) (N=5).

Figure 5 gives an example of a quadratic wave with a period of 2p, which has C1

continuity. A piecewise expression of the quadratic waveform is given by

fq (t)=64t(p− t)/p2,

4(t− p)(t−2p)/p2,

0E tQ p,

pE tE 2p.
(20)

The function is expected to have a better convergence rate. Using only five terms in its
Fourier series, the truncation error can hardly be seen. The small phase disturbance results
in a phase shift from the original signal. The Fourier expansion of the quadratic wave with
phase modulation is

Yq (t)=
32
p3 s

a

i=1

sin ui (t)
(2i−1)3,

dui (t)
dt

=2i−1+ ji (t), i=1, 2, . . . . (21)

Figure 6 depicts the case of a saw-tooth wave with a period of 2p:

fs (t)= t/2p, 0E tE 2p. (22)

Figure 6. Simulation of random Fourier series for a sawtooth wave with random disturbance. D(i)=0·01,
i=1, . . . , 8. ——, Original signal fs (t); · · · · , Fourier series (N=8); –· –· –· –, Fourier series with noise Ys (t)
(N=8).
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The corresponding random Fourier series is expressed as

Ys (t)=
1
2

−
1
p

s
a

i=1

sin ui (t)
i

,
dui (t)

dt
= i+ ji (t), i=1, 2, . . . . (23)

Eight terms are used in the simulation. Since the original waveform has discontinuity
of the first kind at t=2mp, where m is an integer, the convergence of its Fourier series
is much slower than in previous examples. The fluctuations from the original waveform
are relatively large in comparison to the other cases of small disturbances. In order
to distinguish sources of error caused by truncation and random disturbance, results for
the corresponding deterministic Fourier series with the same number of terms is also
presented for comparison.

4. APPLICATION

An application of general periodic excitation with uncertainty is demonstrated by the
vibration analysis of a hydraulic control system in reference [11]. The valve and its elastic
stem are modeled as a linear single-degree-of-freedom damped spring-mass system, as
shown in Figure 7.

The fluid pressure on the valve changes with the amount of the opening or closing of
the valve and is represented by a general periodic function with random phase modulation
Y(t). The differential equation describing the hydraulic control system subject to fluid
pressure force is written as

ẍ+2aẋ+V2x=Y(t)=
a0

2
+ s

a

i=1

(ai cos ui + bi sin ui ),

dui (t)
dt

=iv0 + ji (t), (24)

where x(t) is the displacement response of the valve, V and a are, respectively, the natural
frequency and damping constant of the system, and Y(t) is assumed to be the force per
unit mass without loss of generality. Equation (24) can be reformulated in the state
space by introducing the following state variables:

z1 = x, z2 =dx/dt, z2i+1 =cos ui , z2i+2 = sin ui , i=1, . . . , n. (25)

where n is the actual number of terms used in Y(t). The corresponding stochastic Cauchy
problem for the state variables zi , (i=1, . . . , 2n+2) may be written as a set of the

Figure 7. A schematic diagram for a hydraulic control system.
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Figure 8. First order moment response of a hydraulic system subjected to a disturbed fluid pressure of
triangular waveform: V=1, a=0·1, n=4.

following 2(n+1) ‘‘physical’’ or Stratonovich stochastic differential equations:

dz1

dt
= z2,

dz2

dt
=−V2z1 −2az2 +

a0

2
+ s

n

i=1

(aiz2i+1 + biz2i+2),

dz2i+1

dt
=−[iv0 + ji (t)]z2i+2,

dz2i+2

dt
=[iv0 + ji (t)]z2i+1, i=1, . . . , n. (26)

This SDE set is analyzed by the method of moments. Due to the autonomous
representation of trigonometric functions in equation (26), this set is supplemented by
obvious constraint equations:

z2
2i+1 + z2

2i+2 =1, i=1, . . . , n. (27)

By appropriately applying the Ito differential rule and the mathematical expectation
operator, a set of deterministic equations for various orders of the response moments can
be derived. A computer algorithm has been written to generate all the coefficients in
the moment equations, deal with constraint equations, and finally solve for different
orders of moments of the response.

In the following numerical example, the pressure force Y(t) has the triangle wave form
defined by equation (21). Y(t) is generally a non-zero mean excitation, therefore, the
response moments of odd order are not necessarily zero. The stationary moment (including

Figure 9. Second order moment response of a hydraulic system subjected to a disturbed fluid pressure of
triangle waveform: V=1, a=0·1, n=4. ——, Second moment; · · · · , second central moment.
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Figure 10. Third order moment response of a hydraulic system subjected to a disturbed fluid pressure of triangle
waveform: V=1, a=0·1, n=4.

central moment) responses of up to the fourth order are plotted versus phase modulation
intensity D in Figures 8–11. An identical phase modulation intensity in all harmonic terms
is assumed in the present study. Numerical results show that the moment responses of valve
are significantly reduced for 0QDQ 4, which implies that the opening of the valve may
become much smaller due to the random noise in the pressure force, even if it is very small.
For large phase modulation, the moment responses change slowly. Let mx denote the mean
value of E[x]: our calculation shows that E[(x−mx )3] is always zero. It implies that
the skewness of the response process is zero, or the response is symmetric to its mean
value in a probabilistic sense.

As mentioned before, the random process Y(t) is generally non-Gaussian, so is the
response of linear system. An excess factor is defined here to represent the non-Gaussian
nature of the response:

K=3−E[(x−mx )4]/{E[x−mx )2)]}2. (28)

For a Gaussian process, K=0; for a deterministic harmonic function, K=1·5. From
Figure 12, one can see that the excess factor approaches zero as D increases. This is the
well-known normalization effect.

Figure 11. Fourth order moment response of a hydraulic system subjected to a disturbed fluid pressure of
triangle waveform: V=1, a=0·1, n=4. ——, Fourth moment; · · · · , fourth central moment.



16
D

K
0.4

4 8 120

0.8

1.6

1.2

5
0

1
n

E
rr

or

0.0024

0.0006

2 3 4

0.0018

0.0012

. .   .616

Figure 12. Excess factor of the random response of a hydraulic system subjected to a disturbed fluid pressure
of triangle waveform: V=1, a=0·1, n=4.

Numerical results plotted in Figures 13 and 14 show the effect of phase modulation
intensity D on the convergence rate of the second and fourth order moment response.
A relative error is used as the measure of the convergence rate, which is defined as

Error= [moment value (n=5)−moment value (nQ 5)]/moment value (n=5),

(29)

where n is the number of items included in the random Fourier series. The smaller is the
error value, the faster is the response convergence. The moment value with n=5 is treated
as the converged result in this case based on numerical calculation. Therefore, the error
should be zero for ne 5.

Three different D levels are used in the investigation of convergence rate, namely, D=0,
D=2 and D=10. The defined errors of response moments of both second and
fourth orders decrease with an increasing total number of terms in the random Fourier
series and increase with increasing phase modulation intensity D. That is, the random
disturbance in general periodic excitation results in slower convergence of the response
moments.

The spectral density of valve response Sx (v) is shown in Figure 15, which is calculated
based on the excitation spectrum SY (v) and the system frequency response function H(v)

Figure 13. Convergence of the second order moment response for disturbed triangle waveform excitation:
V=1, a=0·1; ——, D=0; · · · · , D=2; - - - - -, D=10.
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Figure 14. Convergence of fourth order moment response for disturbed triangle waveform excitation: V=1,
a=0·1; ——, D=0; · · · · , D=2; - - - - -, D=10.

by the following formula:

Sx (v)= =H(v) =2SY (v), (30)

where

=H(v) =2 =1/[(V2 −v2)2 +4a2v2], (31)

SY (v)= s
n

i=1

Syi (v)=
a2

0

4
d(v)+ s

n

i=1

(a2
i + b2

i )Di [(iv0)2 +v2 +D2
i /4]

4p[{(iv0)2 −v2 +D2
i /4}2 +v2D2

i ]
. (32)

Three peaks are observed in the response spectrum curve, corresponding to the
fundamental harmonic frequency of the excitation at v=1, system natural frequency at
v=2·2 and the second harmonic frequency at v=3. The third peak is almost invisible.
Other higher order harmonics of the excitation are filtered by the system. It should be
noted that there is a delta impulse with intensity a2

0/4V4 at v=0 due to absence of random
disturbance in the constant component or zeroth harmonic in the Fourier expansion
of the excitation. For larger D value, the response spectrum curve is flatter because the
excitation spectrum becomes wider banded.

Figure 15. Spectral density of the response for disturbed triangle waveform excitation: V=2·2, a=0·22, n=4.
——, D=0·2; · · · · , D=0·3; –·–·–·–, D=0·4. Note that there is an impulse at v=0, i.e., (a0)2d(v)/4V4.
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5. SUMMARY AND CONCLUSIONS

A model of general periodic excitation with random disturbance is presented in this
paper. The excitation model is represented by a random Fourier series with random
disturbance in each term. Monte Carlo simulations of different types of waveform with
random disturbance are illustrated. The nature of the proposed excitation process is
discussed and the application of the model by random vibration analysis of a hydraulic
valve system under a disordered periodic fluid pressure. Numerical results of moment
responses of up to the fourth order, excess factor, and spectral density are presented.

Conclusions from the investigation are summarized as:

1. The random Fourier series presented in this paper, which models general periodic
excitation with random disturbance, is in general a stationary, random process with a
non-zero mean. It is mean-square convergent provided the corresponding deterministic
Fourier series is convergent.

2. The existence of random disturbance can significantly reduce the moment
responses of linear systems, as demonstrated for a hydraulic control system. The moment
responses of the valve in the system are extremely sensitive to a small level of random
disturbance.

3. Existence of the random disturbance reduces the convergence rate of the system
moment response. It implies that more terms should be used in a random Fourier series
to approximate general disordered periodic excitation.

4. The random disturbance in the present model affects the Gaussian nature of the
system response. The larger is the disturbance, the closer is the system response process
to the corresponding Gaussian process in the sense of up to the fourth moment.

The model may be further developed to include random disturbance in amplitudes of
harmonics and correlaton between disturbances in different harmonics. The model and
numerical procedure presented in this paper also apply to linear multiple-degree-of-free-
dom (MDOF) systems. The computational effort for fourth order MDOF system response
moment will increase drastically since the constrain equation (27) and cross-correlations
among excitations need to be considered. The computation effort may be significantly
reduced by the approach of modal analysis, which uncouples the original MDOF system
into a set of SDOF systems if the response of a few modes is dominant. The work can
be readily extended to random disturbances of the shot-noise type. An application of the
model to non-linear systems and further development to non-periodic processes is under
investigation.
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APPENDIX: DERIVATION OF EQUATIONS (16) AND (17)

The following derivation is based on the assumption that disturbances in different
harmonic terms are independent of each other. Let

Y1i (t)= cos ui (t), Y2i (t)= sin ui (t), i=1, 2, . . . . (A1)

Assume ui (t) is a stationary random process uniformly-distributed in [0, 2p]. The mean
value of Y1i (t) thus is

E[Y1i ]=g
2p

0

1
2p

cos ui du=0. (A2)

Similarly,

E[Y2i ]=0. (A3)

The mean square value of Y1i (t) is

E[Y2
1i]=g

2p

0

1
2p

cos2 ui du= 1
2. (A4)

A similar result is obtained for Y1i (t), i.e.,

E[Y2
2i]=1/2. (A5)

The mean value of Y1i (t) · Y2i (t) is

E[Y1iY2i ]=g
2p

0

1
2p

sin ui cos ui du=
1
4p g

2p

0

sin 2ui du=0. (A6)

The assumption that random disturbance ji (t) in each harmonic term are independent
of each other leads to

E[Y1iY1j ]=E[Y2iY2j ]=E[Y1iY2j ]=0, i, j=1, 2, . . . , i$ j. (A7)
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The mean square value of Y(t) is

E[Y2]=E6a0

2
+ s

a

i=1

[aiY1i + biY2i ]7
2

=
a2

0

4
+ a0ai s

a

i=1

E[Y1i ]

+ a0bi s
a

i=1

E[Y2i ]+6s
a

i=1

[aiY1i + biY2i ]7
2

. (A8)

By equations (A2) and (A3), the second and third terms in equation (A8) are zero and
the last term becomes

E6s
a

i=1

[aiY1i + biY2i ]7
2

= s
a

i=1

a2
i E[Y2

1i]+ s
a

i=1

b2
i E[Y2

2i]+2 s
a

i=1

aibiY1iY2i +2 s
a

i=1, j=1,i$ j

×(aiajY1iY1j + aibjY1iY2j + biajY2iY1j + bibjY2iY2j ). (A9)

Based on equations (A4)–(A7), equation (A9) can be further simplified as

E6s
a

i=1

[aiY1i + biY2i ]7
2

=
1
2

s
a

i=1

(a2
i + b2

i ). (A10)

Finally, substitute equation (A10) into equation (A8):

E[Y2(t)]=
a2

0

4
+

1
2

s
a

i=1

(a2
i + b2

i ). (A11)

For the auto-correlation function of Y(t), the derivation process is similar to that of
mean square. By eliminating cross term expectations, one obtains

RY (t)=E[Y(t)Y(t+ t)]

=E6a2
0

4
+ s

a

i=1

a2
i cos ui (t) cos ui (t+ t)

+ s
a

i=1

b2
i sin ui (t) sin ui (t+ t)7

=
a2

0

4
+ s

a

i=1

[a2
i RY1i (t)+ b2

i RY2i (t)]

=
a2

0

4
+

1
2

s
a

i=1

(a2
i + b2

i ) cos (ivt) e(−Di /2) =t=. (A12)


